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Introduction
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The standard scenario of analog quantum simulator


• A broad class of many-body Hamiltonians      can be designed


• Correlation functions are inferred from (destructive) site-resolved readout of spins 

Hspin

4

e−iĤspint

projective spin measurements

Probability for 
configuration s

P(s |Ψ)

Analog quantum simulator
… … Trapped Ions


Rydberg Tweezer Arrays

Nat. Phys. 16, 132 (2020)

Nature 567, 61–65 (2019)
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The standard scenario of analog quantum simulator


• A broad class of many-body Hamiltonians      can be designed


• Correlation functions are inferred from (destructive) site-resolved readout of spins 

Hspin

e−iĤspint

randomized measurement toolbox

Ûrandom

cross-correlation 
between 

probabilities

5

Analog quantum simulator
… …

A. Elben, et. al., Sci. Adv. 6, (2020)

Trapped Ions

Rydberg Tweezer Arrays

No build-in ‘energy’ meter

Nat. Phys. 16, 132 (2020)

Nature 567, 61–65 (2019)
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Why QND energy measurement?

• In general, a many-body system has only one QND observable —  
the system Hamiltonian itself


• Energy is a fundamental physical quantity


• Quantum thermodynamics assumes the projective energy measurement for quantum 
fluctuations relations (Jarzynsky equality)


• Eigenstate thermalisation hypothesis


• Study of quantum chaos to MBL transition


• …
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We are interested in a hybrid device: Quantum Computer (meter) + Quantum Simulator


• The many-body system is entangled with an auxiliary quantum system 


• The auxiliary system (meter) is measured

7

analog 
quantum simulator


N~spins

M qubits

…

…

…

quantum 
logic

meter ℳ

Hybrid quantum device
quantum computer

quantum memory
meter ℳ

… …
entangle

analog quantum 
simulator 𝒮
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We are interested in a hybrid device: Quantum Computer (meter) + Quantum Simulator


• The many-body system is entangled with an auxiliary quantum system 


• More generally the auxiliary system can be a small scale quantum computer (e.g. QFT)

8

analog 
quantum simulator


N~spins

M qubits

…

…

…

quantum 
logic

meter ℳ QFT

Hybrid quantum device
quantum computer

quantum memory
meter ℳ

… …
entangle

Prepare, manipulate, observe a quantum simulator 
with (small scale) quantum memory / computer 
possibly running simple quantum algorithms

analog quantum 
simulator 𝒮

Rydberg Tweezer arrays
DV et.al., PRX Quantum 1, 020302 (2020)
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Hybrid quantum device:   Simulator + Continuous Variable Mode
analog quantum 
simulator 𝒮

entangle

phonons ~ meter ℳ

ions ~ spins

COM mode as continuous variable

This talk: Trapped Ions
Yang et.al., Nat Commun 11, 775 (2020)
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Hybrid quantum device:   Simulator + Continuous Variable Mode
analog quantum 
simulator 𝒮

entangle

phonons ~ meter ℳ

ions ~ spins

COM mode as continuous variable

Many-Body System coupled to a Continuous Meter
Building block: QND-quantum gate

e−iĤQNDt

generated by QND-Hamiltonian

analog 
QND-gate

ĤQND = ϑ Ĥspin

engineered 

spin-Hamiltonian  𝒮

meter   ℳ

⊗ ̂PM

meter   ℳ

[X̂M, ̂PM] = i
meter variable 
~quadratures

This talk: Trapped Ions
Yang et.al., Nat Commun 11, 775 (2020)

Challenge is to 
implement the 

three body 
interaction 
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QND-Measurement of Ĥspin
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QND-Measurement of  — Step 1: Entangle System & MeterĤspin

12

Ût =e−iĤQNDt

Many-Body System coupled to a Meter

∣ψ⟩ ⊗ ∣x0⟩ |Ψ𝒮+ℳ⟩ = ∑
ℓ

cℓ ∣ℓ⟩e−iEℓt ⊗ ∣x0 + ϑEℓt⟩
evolve

Ĥspin ∣ℓ⟩ = Eℓ ∣ℓ⟩≡ ∑
ℓ

cℓ ∣ℓ⟩ ⊗ ∣x0⟩ with (energy eigenbasis)

∣x0⟩

∣ψ⟩ |Ψ𝒮+ℳ⟩

squeezed 
state

ĤQND = Ĥspin ⊗ ̂Pz
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QND-Measurement of  — Step 2: QND-MeasurementĤspin

13

Ût =e−iĤQNDt

Many-Body System coupled to a Meter

∣ψ⟩ ⊗ ∣x0⟩ |Ψ𝒮+ℳ⟩ = ∑
ℓ

cℓ ∣ℓ⟩e−iEℓt ⊗ ∣x0 + ϑEℓt⟩
evolve

∣x0⟩

∣ψ⟩ |ℓ⟩

squeezed 
state

measure : “ ”X̂M xℓ ∼ Eℓ ∣ℓ⟩ ⊗ ∣x0 + ϑEℓt⟩
with probability:

𝒫ℓ = |cℓ |2

“ "xℓ ∼ Eℓ

QND-Measurement of Ĥspin

• measuring the meter   reveals 
energy eigenvalue  of ,


• prepares system in energy eigenstate 

• which remains unchanged under repeated 

QND-measurements

xℓ ∼ ϑEℓ
Eℓ Ĥspin

|ℓ⟩

ĤQND = Ĥspin ⊗ ̂Pz
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QND-Measurement of  — Step 2: QND-MeasurementĤspin

14

QND-Measurement of Ĥspin

• measuring the meter   reveals 
energy eigenvalue  of ,


• prepares system in energy eigenstate 

• which remains unchanged under repeated 

QND-measurements

xℓ ∼ ϑEℓ
Eℓ Ĥspin

|ℓ⟩

This is NOT measurement of  
the expectation value ⟨Ĥspin⟩
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QND-Measurement of  — Step 2: QND-MeasurementĤspin
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QND-Measurement of Ĥspin

• measuring the meter   reveals 
energy eigenvalue  of ,


• prepares system in energy eigenstate 

• which remains unchanged under repeated 

QND-measurements

xℓ ∼ ϑEℓ
Eℓ Ĥspin

|ℓ⟩

• quantum N-body system dim  ∼ 2N

Ĥspin = J ∑
<i, j>

⃗S i ⋅ ⃗S j

Emax ∼ NJ
E

0

Δe ∼ NJe−N

ΔE ∼
1
Tmes

average level 
spacing

resolve single vs. band of eigenstates

ΔE
energy 

resolution

↔ τdecoherenceSQL

Challenge
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Trapped-Ion Implementation 

of the QND gate
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Trapped-Ion Implementation of QND measurement

a b c
read-out ion

system ion

COM

Full system Hamiltonian of Double Mølmer-Sørensen configuration:

Ĥint =
Ω
2 ∑

n

̂σ+
n (e−iΔt+ik ̂Zn + [1 +

δΩ
Ω

]eiΔt−ik ̂Zn + e−iΔ′￼t−ik ̂Zn + [1 +
δΩ
Ω

]eiΔ′￼t+ik ̂Zn) + h . c .
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+ + + + +

−Δ, Ω

Δ, Ω

Molmer-Sørensen interaction

+

homodyne

read-out

`double’

Δ′￼, Ω

−Δ′￼, Ω

transverse Ising model

Ĥ′￼spin = − ∑
i<j

Jij ̂σx
i ̂σx

j + h′￼

N

∑
j=1

̂σz
j

Ĥspin = − ∑
i<j

Jij ̂σx
i ̂σx

j + h
N

∑
j=1

̂σz
j

H𝒮ℳ = Ĥ′￼spin + ϑ(t) Ĥspin ⊗ ̂PCOM

Hamiltonian for system + meter

Δ′￼− Δ = νCOM ̂PCOM meterwe tune:

̂PCOM
   QND !Ĥ′￼= Ĥ

fine tuning

trap frequency

here: weak coupling 

D. Porras and J. I. Cirac

Phys. Rev. Lett. 92, 207901 (2004)

Trapped-Ion Implementation of QND measurementa b c
read-out ion

system ion

COM

a b c
read-out ion

system ion

COM
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Stochastic Density Matrix Equation
Simulating single run of homodyne measurement

+ + + + +

−Δ, Ω

Δ, Ω

+

homodyne

read-out

Δ′￼, Ω

−Δ′￼, Ω

̂PCOM

The homodyne current provides a continuous readout

of the energy of the quantum many-body system

dX(t) ≡ I(t)dt = 2 γϵ⟨Ĥ/J⟩cdt + dW(t)

d ̂ρc(t) = − i[Ĥ′￼, ̂ρc(t)]dt + γ𝒟[Ĥ/J] ̂ρc(t) dt

+ γϵℋ[Ĥ/J] ̂ρc(t) dW(t)

𝒟[ ̂s] ̂ρc ≡ ̂s ̂ρc ̂s† − ( ̂s† ̂s ̂ρc + H . c.)/2
ℋ[ ̂s] ̂ρc ≡ ( ̂s − ⟨ ̂s⟩c) ̂ρc + H . c .
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QND Measurement of - a Single RunĤspin

a b e

c d

a b e

c d

2

FIG. 1. QND measurement of a many-body Hamiltonian Ĥ in a quantum simulator setting. The many-body spin system S,
shown in (a), is entangled with an ancillary system M (‘meter’) by the unitary ÛSM(t) = exp{�i

R t
dt

0[Ĥ ⌦ I+ #(t0)Ĥ ⌦ P̂ ]}.
(b) Subsequent reading of a ‘meter’ value x` ⌘ x0 + E`

R t
dt

0
#(t0) prepares the many-body system in an energy eigenstate |`i

with the eigenvalue E`. (c) A single trajectory simulation of an ideal QND measurement of Ising Hamiltonian (3) on a system

of N = 5 spins, ↵ = 1.5, h/J = 1.5. The window-filtered homodyne current I⌧ (t) = (2N
p
�✏⌧)�1

R1
0

dt
0
I(t � t

0)e�t0/⌧ (red

curve) fluctuates around a value corresponding to the eigenenergy prepared by the measurement of Ĥ. The thin horizontal
lines show the system eigenenergies E` (only the symmetry sector containing the ground state is shown, see Methods) and the
blue color indicates the conditional populations P` of the corresponding eigenstates. (d) Observation of quantum jumps due
to the mismatch of the transverse fields Ĥ

0 = Ĥ + �h̃
P

j �̂
z
j with �h̃/J = �0.2. The filtered photocurrent (red) clearly shows

sudden jumps between eigenstates at times t1 and t2. (e) Preparation of energy eigenstates or microcanonical ensembles by
the ideal QND measurement in a larger system of N = 8 spins, ↵ = 1.5, h/J = 0.8. The estimate of the system energy given
by the cumulative time-average of the homodyne current I⌧ = (2N

p
�✏⌧)�1

R ⌧

0
I(t)dt (red line) gradually converges to a single

eigenenergy (grey lines) as averaging time ⌧ increases. The corresponding uncertainty (red area) due to shot noise decreases as
⇠ 1/

p
�✏⌧ . Inset: the conditional population of the energy eigenstates (grey points) at times t⇤1, t

⇤
2, and t

⇤
3 is well captured by

gaussian distributions of widths 1/
p

4�✏t⇤1,2,3 describing the fluctuations of the shot noise averaged over ⌧ = t
⇤
1,2,3 (red curve).

| i ⌘
P

` c` |`i is a superposition of energy eigenstates,

Ĥ |`i = E` |`i , and |x0i is an (improper) eigenstate of X̂
(or squeezed state). We obtain for the time-evolved state
| (t)i = Û(t) | i ⌦ |x0i =

P
` c` |`i ⌦ |x0 + #E`ti. Read-

ing the meter as x` ⌘ x0 +#E`t, and thus measuring the
eigenvalue E`, will prepare the system in |`i. The proba-
bility for obtaining the particular measurement outcome
E` is P` = |c`|2. Repeating the QND measurement will
reproduce the particular E` with certainty, with the sys-
tem remaining in |`i. The above discussion is readily
extended to mixed initial system states, and e.g. initial
coherent states of the meter.

In a quantum simulator setting, QND measurement of
the many-body Hamiltonian Ĥ is incorporated by engi-
neering the extended system-meter Hamiltonian ĤSM =
Ĥ ⌦ I + #Ĥ ⌦ P̂ . In an interaction picture with respect
to Ĥ ⌦ I, the joint system then evolves according to the
Hamiltonian Ĥ int

SM ⌘ ĤQND realising the QND measure-
ment discussed above and illustrated in Fig. 1(b). On
the other hand, by allowing the system–meter coupling
#(t) to be switched on and o↵ in time, we can alternate
between the conventional free-evolution simulation and
QND measurement mode of the system. In an actual im-
plementation, as discussed below for trapped ions, we will

achieve building the extended system-meter Hamiltonian

ĤSM = Ĥ 0
⌦ I + #Ĥ ⌦ P̂ , (2)

where Ĥ 0 and Ĥ may di↵er (slightly). We note that
the QND measurement of Ĥ is obtained by fine-tuning
Ĥ 0 = Ĥ. In repeated measurements a mismatch Ĥ 0

6= Ĥ
will be visible as ‘quantum jumps’ between energy eigen-
states.

In the trapped-ion example discussed below the many-
body Hamiltonian Ĥ will be a long-range transverse Ising
model,

Ĥ = �

X

i<j

Jij �̂
x
i �̂

x
j � h

X

j

�̂z
j , (3)

where Jij = J/ |i � j|↵ with 0 < ↵ < 3 and h the trans-
verse field. Remarkably, in our setup, the Hamiltonian
Ĥ 0 will di↵er from Ĥ just by the transverse field taking
on the value h0. We will be able to tune h = h0 thus
achieving the QND condition.

As last step in our formal development, we wish to
formulate QND measurement of Ĥ as measurement con-
tinuous in time. Physically, this amounts to making fre-
quent readouts of the meter variable X̂, with the quan-

Homodyne current from scattered light reveals `energy'

single run prepares energy eigenstate

QND

ℐτ(t) ∼ ⟨Ĥspin⟩c + noise

• homodyne current  reads energy

spectrum of  
Hamiltonian Ĥ

• we illustrate single runs of an experiment 
by simulating a stochastic density matrix 
eq. for homodyne measurement

filtered / integrated 
homodyne current
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QND Measurement of - a Single RunĤspin

a b e

c d

a b e

c d
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FIG. 1. QND measurement of a many-body Hamiltonian Ĥ in a quantum simulator setting. The many-body spin system S,
shown in (a), is entangled with an ancillary system M (‘meter’) by the unitary ÛSM(t) = exp{�i

R t
dt

0[Ĥ ⌦ I+ #(t0)Ĥ ⌦ P̂ ]}.
(b) Subsequent reading of a ‘meter’ value x` ⌘ x0 + E`

R t
dt

0
#(t0) prepares the many-body system in an energy eigenstate |`i

with the eigenvalue E`. (c) A single trajectory simulation of an ideal QND measurement of Ising Hamiltonian (3) on a system

of N = 5 spins, ↵ = 1.5, h/J = 1.5. The window-filtered homodyne current I⌧ (t) = (2N
p
�✏⌧)�1

R1
0

dt
0
I(t � t

0)e�t0/⌧ (red

curve) fluctuates around a value corresponding to the eigenenergy prepared by the measurement of Ĥ. The thin horizontal
lines show the system eigenenergies E` (only the symmetry sector containing the ground state is shown, see Methods) and the
blue color indicates the conditional populations P` of the corresponding eigenstates. (d) Observation of quantum jumps due
to the mismatch of the transverse fields Ĥ

0 = Ĥ + �h̃
P

j �̂
z
j with �h̃/J = �0.2. The filtered photocurrent (red) clearly shows

sudden jumps between eigenstates at times t1 and t2. (e) Preparation of energy eigenstates or microcanonical ensembles by
the ideal QND measurement in a larger system of N = 8 spins, ↵ = 1.5, h/J = 0.8. The estimate of the system energy given
by the cumulative time-average of the homodyne current I⌧ = (2N

p
�✏⌧)�1

R ⌧

0
I(t)dt (red line) gradually converges to a single

eigenenergy (grey lines) as averaging time ⌧ increases. The corresponding uncertainty (red area) due to shot noise decreases as
⇠ 1/

p
�✏⌧ . Inset: the conditional population of the energy eigenstates (grey points) at times t⇤1, t

⇤
2, and t

⇤
3 is well captured by

gaussian distributions of widths 1/
p

4�✏t⇤1,2,3 describing the fluctuations of the shot noise averaged over ⌧ = t
⇤
1,2,3 (red curve).

| i ⌘
P

` c` |`i is a superposition of energy eigenstates,

Ĥ |`i = E` |`i , and |x0i is an (improper) eigenstate of X̂
(or squeezed state). We obtain for the time-evolved state
| (t)i = Û(t) | i ⌦ |x0i =

P
` c` |`i ⌦ |x0 + #E`ti. Read-

ing the meter as x` ⌘ x0 +#E`t, and thus measuring the
eigenvalue E`, will prepare the system in |`i. The proba-
bility for obtaining the particular measurement outcome
E` is P` = |c`|2. Repeating the QND measurement will
reproduce the particular E` with certainty, with the sys-
tem remaining in |`i. The above discussion is readily
extended to mixed initial system states, and e.g. initial
coherent states of the meter.

In a quantum simulator setting, QND measurement of
the many-body Hamiltonian Ĥ is incorporated by engi-
neering the extended system-meter Hamiltonian ĤSM =
Ĥ ⌦ I + #Ĥ ⌦ P̂ . In an interaction picture with respect
to Ĥ ⌦ I, the joint system then evolves according to the
Hamiltonian Ĥ int

SM ⌘ ĤQND realising the QND measure-
ment discussed above and illustrated in Fig. 1(b). On
the other hand, by allowing the system–meter coupling
#(t) to be switched on and o↵ in time, we can alternate
between the conventional free-evolution simulation and
QND measurement mode of the system. In an actual im-
plementation, as discussed below for trapped ions, we will

achieve building the extended system-meter Hamiltonian

ĤSM = Ĥ 0
⌦ I + #Ĥ ⌦ P̂ , (2)

where Ĥ 0 and Ĥ may di↵er (slightly). We note that
the QND measurement of Ĥ is obtained by fine-tuning
Ĥ 0 = Ĥ. In repeated measurements a mismatch Ĥ 0

6= Ĥ
will be visible as ‘quantum jumps’ between energy eigen-
states.

In the trapped-ion example discussed below the many-
body Hamiltonian Ĥ will be a long-range transverse Ising
model,

Ĥ = �

X

i<j

Jij �̂
x
i �̂

x
j � h

X

j

�̂z
j , (3)

where Jij = J/ |i � j|↵ with 0 < ↵ < 3 and h the trans-
verse field. Remarkably, in our setup, the Hamiltonian
Ĥ 0 will di↵er from Ĥ just by the transverse field taking
on the value h0. We will be able to tune h = h0 thus
achieving the QND condition.

As last step in our formal development, we wish to
formulate QND measurement of Ĥ as measurement con-
tinuous in time. Physically, this amounts to making fre-
quent readouts of the meter variable X̂, with the quan-

Homodyne current from scattered light reveals `energy'

single run prepares energy eigenstate

QND approx. QND

spectrum of  
Hamiltonian Ĥ

Ĥ ′ = Ĥ +δh̃
∑

j
σ̂z

j
<latexit sha1_base64="UOTOaepSdHjRXCc3Jnr4zii6XLY="></latexit>

δh̃/J =−0.2
<latexit sha1_base64="Wsg6EjUjdvs9a6Z86zwEMuqHFFs="></latexit>

quantum jumps between eigenstates
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QND Measurement of Many-Body Hamiltonian - Single Run

22

total integration time τ

microcanonical ensemble ~ single eigenstate: τ ∼ tH

¢E ª 1/
p
∞≤ø

<latexit sha1_base64="ihoxEsyHQpoSX5zzub1Z/UwVwwU=">AAACbXicfZHfahNBFMZP1j+t679U8UqRxSD2Qre7KdTmyoIKXlZo2kJmCbPjSTJkZnY7c6akLHkKn8ZbfQqfon0Ep2mFhKLn6vB9vzPM+U5ZK+koy363olu379xdW78X33/w8NHj9saTQ1d5K7AvKlXZ45I7VNJgnyQpPK4tcl0qPCqnHy/9o1O0TlbmgM5qLDQfGzmSglOQhu13bBCzT6iIJ5+ZkzrfYu7EUsPGXGvOsHZSVYYR9/OYFcN2J0uz3m623UtuNnmaLarz4QIWtT/caG2yb5XwGg0JxZ0boBmHtSZv87ymorFYV5bm8ev/Uk7YAF5yAfQOay6mfIyDg7xoRpUhNGK+6qiwnukVjTS1v7ZHcpZ4rbgnFy+hjRduviwMPI12Z8ujyzTXTnOa3BDdmS5XRXTShB8zzafIw12I0MZs8WoymQ0nqE6Rwh0MekwJZyHbvwEm/24Ou2m+nXa/djt7O1chwzo8h1ewCTm8hz34AvvQBwHf4Qf8hF+t8+hZ9CJ6eYVGreuZp7BS0Zs/SVjASg==</latexit>

N=8 spins

energy width

tim
e 

in
te

gr
at

ed
 

ho
m

od
yn

e 
cu

rre
nt

ℐ
τ

=
(2

N
γϵ

τ)
−

1 ∫τ 0
I(

t)d
t

sp
ec

 o
f Ĥ

sp
in
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Eigenstate Thermalization Hypothesis (for mesoscopic systems)

5 spins14 spins

a b dc

Excited-state phase transition in the Ising model with Jij ∼ J/ | i − j |α=1.5

ferro

para

microcanonical ensemble ΔE/(JN ) = 0.1

⟨ℓ | Ô |ℓ⟩ = O(Eℓ) = tr(Ô ̂ρmc
Eℓ

)

⟨ℓ′￼∣ Ô ∣ ℓ⟩ = O(Ē)δℓ′￼ℓ + e−S(Ē)/2fÔ(Ē, ω)Rℓ′￼ℓ

• ETH Keith R. Fratus, Mark Srednicki, arXiv:1611.03992


• ferro-paramagnetic transition for for 
 manifest in  or  

with
1 < α ≤ 2 P(mx) ⟨m̂2

x⟩

m̂x = N−1 ∑
j

̂σ x
j

P(mx)

Work distribution function and quantum fluctuation relations (QFRs)

magnetization

en
er

gy
 (~

te
m

pe
ra

tu
re

)

ferro
para

23
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Measuring Work Distribution in Quantum Thermodynamics

Protocol

t

en
er

gy
 s

pe
ct

ru
m

Ĥi
<latexit sha1_base64="if8zmSNmVm/SZrFnJm3aEfRRZMg="></latexit>

Ĥ f
<latexit sha1_base64="Hj7b+6eVC0a86/Ig670WKALg2vo=">AAACSHicfZDNSsNAFIUn9T/+61KEYBG60JBUULsT3AhuFFpbbEuZjDfN0MkkZO5IpfQt3OoriK/hG/gW7sSd01ahpehdXc757uVwglRwhZ73buVmZufmFxaX7OWV1bX1jc2tG5XojEGFJSLJagFVILiECnIUUEszoHEgoBp0zgd+9R4yxRNZxocUmjFtSx5yRtFIt42IonPhtEK7tZH3XK906h2VnOnFd73h5M92D5Py5evLVWvTKjTuEqZjkMgEVaoOsm0SRwe+n2Kzl0GaZNi39/+lFMsMOOAMqBWklHVoG+plv9kLE4kgWX/SESa5LDV7XKb6xw5519GxoBqVPYb2NFP9caGuMTztjp+O0zRWMcVoSlQPcTApguLSJG7EtAPUVI4Imd0YfnWibisCcQ9oKpagwUXomm5/C3T+Xm6Krn/kFq9NycdkNItkh+yRAvHJCTkjF+SKVAgjkjySJ/JsvVkf1qf1NUJz1s/NNpmYXO4bOFa1wg==</latexit>

adiabatic energy 
eigenstates

work

measure / prepare single 
energy eigenstate

measure energy 
distribution

add work / no 
measurement

Ĥ(t )
<latexit sha1_base64="h/AF4iixtUP5YSOKeJNR6Bezkfk="></latexit>

pn ∼ e−βEλ0
n

<latexit sha1_base64="n+nx9GMamxD2N/DPGVDNWYGZMaQ=">AAACaXicfZHbattAEIbXSts46iF2QqG0pYiagguNkBJI4qsGQqCXLvgEli1Wm7G9eHcltLPGQegNCn2a3qbP0WfoS3SdpGBj2rka/v+bYQ5JJrjGIPhVcXYePX6yW91znz57/mK/Vj/o6dTkDLosFWk+SKgGwRV0kaOAQZYDlYmAfjK/XPn9BeSap6qDNxmMJJ0qPuGMopXi2scsLlQZaS49GBdHUQJIvauVNi4iYftc07gIyrJ041oj8IPWeXDS8raT0A/uonHx8q18V/v2uR3XK83oOmVGgkImqNZDUFO70uxTGGY4KnLI0hxL98N/Kc1yC644CxoNGWVzOoVhJxwVk1QhKFZuOsKuplqjgqvMPNgTvvSMFNSgdtfQwjBdrgtDg5Pz5XrpOk2llhRnW6K+kcmmCJorO3Ek6Ryo/Qki5G5019WbLeMZiAWg/YECAz7C0t727wG9fye9Yz888Y+/2iOfkvuokjfkPWmSkJyRC/KFtEmXMPKd/CC35Gflt1N3Xjmv71Gn8lBzSDbCafwBwTC/ww==</latexit>

final energy 
distribution

p[w ;λ] =
∑

m,n
δ

(
w −

[
Eλτ

m −Eλ0
n

])
pm|n[λ]p0

n
<latexit sha1_base64="MOxv+YDtgZvBM5Ms93NjGCIZi8M="></latexit>

work distribution

H𝒮ℳ = Ĥ′￼spin + ϑ(t) Ĥspin ⊗ ̂PCOM
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Work distribution function and quantum fluctuation relations (QFRs)

d e f

a b c

Quantum fluctuation relations: Foundations and applications, M Campisi, P Hänggi, and P Talkner, RMP 2011

Verification of Jarzynski equality  with 5 spins⟨e−βW⟩ = e−βΔF

1000 simulated experimental runs

increasing quench timeProtocol

first potential test of QFR 

in quantum many-body

25
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Conclusions
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ĤQND = Ĥspin ⊗ ̂Pz

QND gate  is a building block of quantum algorithms like  

quantum phase estimation (QPE) which enables


• Measurement of many-body Hamiltonian : 

 

• Study of energy level statistics of quantum many-body systems 
via Spectral Form Factor (SFF)  

• Sampling many-body spectral functions    


• …

𝒰QND

Ĥspin

Ĥspin =

27

𝒰QND = e−iĤQNDt

QND gate — Applications

• Test of Eigenstate Thermalisation Hypothesis

• Work distribution function and Quantum Fluctuation Relations

D. Yang, et. al.

Nat. Commun. 11, 775 (2020)

D. Sels, E. Demler 
arXiv:1910.14213 [quant-ph]
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Figure 2. NMR Spectra By clustering the molecules according to the Hellinger distance t-SNE clusters we can reorganize
the distance matrix as shown in panel A. For each of the clusters, we look at the di↵erent spectra, which indeed show great
similarity. A representative spectrum for each of the clusters is shown in panel B, where the spectra are labeled according to
the t-SNE clusters shown in Fig. 1–B. In addition, we show an example small molecule out of this cluster next to the associated
spectrum. The atoms and interactions responsible for the shown portions of the spectra are indicated in blue and red arrows
respectively.

particular in clusters 3 and 4, as can be seen in Fig. 2–
A. In what remains, we are concerned with finding an
algorithm to further improve the Hamiltonian parameter
estimation.

QUANTUM MODEL SIMULATION

While our model is microscopically motivated, thereby
capturing the spectra very well and allowing for a phys-
ical interpretation of the model parameters, it has the
drawback that, unlike simple models such as Lorentzian
mixture models [38, 39], there is no analytic form for
the spectrum in terms of the model parameters. More-
over, even simulating the model becomes increasingly
complex when the number of spins increase. Before we
solve the inference problem, let us present an e�cient
method to extract the simulated NMR spectrum on a
quantum simulator-computer. The basic task is to ex-
tract the spectrum (3) by measuring (2). Recall that we
work at infinite temperature, hence by inserting an eigen-
basis of the total z-magnetization Sz

tot
=

P
j
mj |zji hzj |,

we find

S(t|✓) =
2NX

j=1

mj

2N
hzj | e

iH(✓)tSz

tot
e�iH(✓)t

|zji , (6)

where mj is the total z-magnetization in the eigenstate
|zji. Consequently, we can extract the spectrum by ini-
tializing our system in a product state of z-polarized
states after which we quench the system to evolve un-
der the Hamiltonian H(✓), and then finally measure the
expectation value of Sz

tot
at time t. By repeating the

procedure for various initial eigenstates and weighting
the results by the initial magnetization mj , we obtain an

estimate of S(t|✓). While intuitive and simple, this naive
procedure has an exponential sampling cost and is there-
fore extremely ine�cient. Fortunately, due to the mas-
sive degeneracy of the Sz

tot
operator and some remaining

Z2 symmetry of the Hamiltonian (1), we can reduce the
sampling down to O(N/2) samples rather than O(2N ).
The basic idea is to prepare a random state in the sub-
space of fixed z-magnetization such that the sampling
over all the states at fixed magnetization can be replaced
by averaging over realization of the random state. Such
states can be e�ciently prepared using Hamiltonians that
scramble information quickly, moreover fluctuations from
the mean are exponentially suppressed in N such that it’s
su�cient to average over O(1) di↵erent Hamiltonians. A
detailed analysis is given in the SI. The entire procedure
is schematically depicted in Fig. 3. Clearly, it only re-
quires N qubits. Obtaining S(t|✓) at a fixed time t will
require sampling O(N) random initial states with fixed
total z-magnetization. These states can be prepared by
randomizing initial product states with a fixed Sz

tot
us-

ing a fast scrambling unitary Umix, as shown in Fig. 3.
Next, we propagate each state with the physical Hamil-
tonian H(✓) for fixed time t. Since the mixing takes
O(logc(N)) [40, 41], this will take O(N ⇥ (t+ a logc N))
with c a constant of O(1). In order to construct the full
spectrum, we will have to measure at various times t.
Given the finite decoherence rate, samples only have to
be collected up to a maximum time O(1/�), while the
spectral norm of the system typically increases linearly
in the number of spins. Taking samples at the Nyquist
frequency, we will have to collect O(N) time samples,
leading to a final scaling of O(N2 logc N) to obtain a
simulated NMR spectrum.

ĤQND = Ĥspin ⊗ ̂σz

DV et.al.

PRX Quantum 1, 020302 (2020)
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Thank you


