Quantum Non-Demolition measurement of a many-body Hamiltonian

Denis Vasilyev

L Sieberer

D Yang

M Baranov

P Zoller

Quantum Non-Demolition measurement of a many-body Hamiltonian

Denis Vasilyev

• `Single shot' measurement of `the energy' of a quantum many-body system

Introduction

Analog quantum simulator

Trapped Ions
Rydberg Tweezer Arrays

Nat. Phys. 16, 132 (2020)

Nature 567, 61–65 (2019)

- The standard scenario of analog quantum simulator
- A broad class of many-body Hamiltonians $\,H_{
 m spin}\,\,$ can be designed
- · Correlation functions are inferred from (destructive) site-resolved readout of spins

Analog quantum simulator

Trapped Ions
Rydberg Tweezer Arrays

Nat. Phys. 16, 132 (2020)

Nature 567, 61–65 (2019)

- The standard scenario of analog quantum simulator
- A broad class of many-body Hamiltonians $\,H_{
 m spin}\,\,$ can be designed
- · Correlation functions are inferred from (destructive) site-resolved readout of spins

No build-in 'energy' meter

randomized measurement toolbox

A. Elben, et. al., Sci. Adv. 6, (2020)

Why QND energy measurement?

- In general, a many-body system has only one QND observable the system Hamiltonian itself
- Energy is a fundamental physical quantity
- Quantum thermodynamics assumes the projective energy measurement for quantum fluctuations relations (Jarzynsky equality)
- Eigenstate thermalisation hypothesis
- Study of quantum chaos to MBL transition

• ...

We are interested in a hybrid device: Quantum Computer (meter) + Quantum Simulator

- The many-body system is entangled with an auxiliary quantum system
- The auxiliary system (meter) is measured

We are interested in a hybrid device: Quantum Computer (meter) + Quantum Simulator

- The many-body system is entangled with an auxiliary quantum system
- More generally the auxiliary system can be a small scale quantum computer (e.g. QFT)

Prepare, manipulate, observe a quantum simulator with (small scale) quantum memory / computer possibly running simple quantum algorithms

Rydberg Tweezer arrays

DV et.al., PRX Quantum 1, 020302 (2020)

Hybrid quantum device: Simulator + Continuous Variable Mode

This talk: Trapped lons

Yang et.al., Nat Commun 11, 775 (2020)

Hybrid quantum device: Simulator + Continuous Variable Mode

Many-Body System coupled to a Continuous Meter

Building block: QND-quantum gate

meter *M*

 $= e^{-i\hat{H}_{\text{QND}}t}$ analog
QND-gate

generated by QND-Hamiltonian

 $\hat{H}_{\mathrm{QND}} = \vartheta \, \hat{H}_{\mathrm{spin}} \otimes \hat{\underline{P}}_{M}$ engineered

spin-Hamiltonian $\mathcal S$

Challenge is to implement the three body interaction

~quadratures

meter *M*

This talk: Trapped Ions

Yang et.al., Nat Commun **11**, 775 (2020)

QND-Measurement of \hat{H}_{spin}

QND-Measurement of \hat{H}_{spin} — Step 1: Entangle System & Meter

Many-Body System coupled to a Meter

$$\hat{H}_{\text{QND}} = \hat{H}_{\text{spin}} \otimes \hat{P}_{z}$$

$$|\psi\rangle \otimes |x_0\rangle \xrightarrow{\text{evolve}} |\Psi_{\mathcal{S}+\mathcal{M}}\rangle = \sum_{\ell} c_{\ell} |\ell\rangle e^{-iE_{\ell}t} \otimes |x_0 + \vartheta E_{\ell}t\rangle$$

$$\equiv \sum_{\ell} c_{\ell} \, |\, \ell \rangle \otimes |\, x_0 \rangle \quad \text{with} \quad \hat{H}_{\text{spin}} \, |\, \ell \rangle = E_{\ell} \, |\, \ell \rangle \quad \text{(energy eigenbasis)}$$

QND-Measurement of \hat{H}_{spin} — Step 2: QND-Measurement

Many-Body System coupled to a Meter

$$\hat{H}_{\text{QND}} \neq \hat{H}_{\text{spin}} \otimes \hat{P}_{z}$$

$$\text{QND-Measurement of } \hat{H}_{\text{spin}}$$

- measuring the meter $x_\ell \sim \vartheta E_\ell$ reveals energy eigenvalue E_ℓ of $\hat{H}_{\rm spin}$,
- prepares system in energy eigenstate $|\mathscr{C}\rangle$
- which remains unchanged under repeated QND-measurements

$$|\psi\rangle \otimes |x_0\rangle \xrightarrow{\text{evolve}} |\Psi_{\mathcal{S}+\mathcal{M}}\rangle = \sum_{\ell} c_{\ell} |\ell\rangle e^{-iE_{\ell}t} \otimes |x_0 + \vartheta E_{\ell}t\rangle$$

$$\xrightarrow{\text{measure } \hat{X}_{M}: "x_{\ell} \sim E_{\ell}"} |\ell\rangle \otimes |x_{0} + \vartheta E_{\ell} t\rangle$$

with probability:

$$\mathscr{P}_{\ell} = |c_{\ell}|^2$$

QND-Measurement of \hat{H}_{spin} — Step 2: QND-Measurement

This is NOT measurement of the expectation value $\langle \hat{H}_{\rm spin} \rangle$

QND-Measurement of \hat{H}_{spin}

- measuring the meter $x_\ell \sim \vartheta E_\ell$ reveals energy eigenvalue E_ℓ of $\hat{H}_{\rm spin}$,
- prepares system in energy eigenstate $|\ell\rangle$
- which remains unchanged under repeated QND-measurements

QND-Measurement of \hat{H}_{spin} — Step 2: QND-Measurement

• quantum N-body system dim $\sim 2^N$ resolve single vs. band of eigenstates

SQL
$$\Delta E \sim \frac{1}{\sqrt{T_{\rm mes}}} \leftrightarrow \tau_{\rm decoherence}$$

 $lack egin{array}{c} lack lack$

- measuring the meter $x_\ell \sim \vartheta E_\ell$ reveals energy eigenvalue E_ℓ of $\hat{H}_{\rm spin}$,
- prepares system in energy eigenstate $|\mathscr{C}\rangle$
- which remains unchanged under repeated QND-measurements

Trapped-Ion Implementation of the QND gate

Trapped-Ion Implementation of QND measurement

read-out ion

Full system Hamiltonian of Double Mølmer-Sørensen configuration:

$$\hat{H}_{\text{int}} = \frac{\Omega}{2} \sum_{n} \hat{\sigma}_{n}^{+} \left(\underline{e^{-i\Delta t + ik\hat{Z}_{n}}} + \left[1 + \frac{\delta\Omega}{\Omega}\right] \underline{e^{i\Delta t - ik\hat{Z}_{n}}} + \underline{e^{-i\Delta' t - ik\hat{Z}_{n}}} + \left[1 + \frac{\delta\Omega}{\Omega}\right] \underline{e^{i\Delta' t + ik\hat{Z}_{n}}} \right) + h \cdot c \cdot$$

Trapped-Ion Implementation of QND measurement

Hamiltonian for system + meter

$$H_{\mathcal{SM}} = \hat{H}_{\mathrm{Spin}}' + \vartheta(t) \, \hat{H}_{\mathrm{spin}} \otimes \hat{P}_{\mathrm{COM}} \qquad \hat{H}' = \hat{H} \quad \mathsf{QND} \, !$$

hère: weak coupling

transverse Ising model

$$\hat{H}'_{\text{spin}} = -\sum_{i < j} J_{ij} \hat{\sigma}_i^x \hat{\sigma}_j^x + h' \sum_{j=1}^N \hat{\sigma}_j^z$$

$$\hat{H}_{\text{spin}} = -\sum_{i < j} J_{ij} \hat{\sigma}_i^x \hat{\sigma}_j^x + h \sum_{i=1}^N \hat{\sigma}_j^z$$

we tune:
$$\Delta' - \Delta = \nu_{\text{COM}} \longrightarrow \hat{P}_{\text{COM}}$$
 mete

Stochastic Density Matrix Equation

Simulating single run of homodyne measurement

$$\begin{split} d\hat{\rho}_{\rm c}(t) &= -i[\hat{H}',\hat{\rho}_{\rm c}(t)]dt + \gamma \mathcal{D}[\hat{H}/J]\hat{\rho}_{\rm c}(t)\,dt \\ &+ \sqrt{\gamma\epsilon} \mathcal{H}[\hat{H}/J]\hat{\rho}_{\rm c}(t)\,dW(t) \end{split}$$

$$dX(t) \equiv I(t)dt = 2\sqrt{\gamma\epsilon} \langle \hat{H}/J \rangle_{c} dt + dW(t)$$

The homodyne current provides a continuous readout of the energy of the quantum many-body system

$$\mathcal{D}[\hat{s}]\hat{\rho}_{c} \equiv \hat{s}\hat{\rho}_{c}\hat{s}^{\dagger} - (\hat{s}^{\dagger}\hat{s}\hat{\rho}_{c} + H.c.)/2$$

$$\mathcal{H}[\hat{s}]\hat{\rho}_{c} \equiv (\hat{s} - \langle \hat{s} \rangle_{c})\hat{\rho}_{c} + H.c.$$

QND Measurement of $\hat{H}_{\rm spin}$ - a Single Run

 $N = 5 \text{ spins}, \ \alpha = 1.5, \ h/J = 1.5.$

Homodyne current from scattered light reveals `energy'

homodyne current reads energy

$$\mathcal{I}_{\tau}(t) \sim \langle \hat{H}_{\rm spin} \rangle_c + \text{noise}$$

 we illustrate single runs of an experiment by simulating a stochastic density matrix eq. for homodyne measurement

single run prepares energy eigenstate

QND Measurement of $\hat{H}_{\rm spin}$ - a Single Run

Homodyne current from scattered light reveals 'energy'

 $N = 5 \text{ spins}, \ \alpha = 1.5, \ h/J = 1.5.$

QND Measurement of Many-Body Hamiltonian - Single Run

Eigenstate Thermalization Hypothesis (for mesoscopic systems)

Excited-state phase transition in the Ising model with $J_{ij} \sim J/\|i-j\|^{\alpha=1.5}$

microcanonical ensemble $\Delta E/(JN) = 0.1$

• ETH Keith R. Fratus, Mark Srednicki, arXiv:1611.03992

$$\begin{split} \langle \ell \, | \, \hat{O} \, | \, \ell \rangle &= O(E_{\ell}) = \mathrm{tr}(\hat{O}\hat{\rho}_{E_{\ell}}^{\mathrm{mc}}) \\ \langle \ell' \, | \, \hat{O} \, | \, \ell \rangle &= O(\bar{E}) \delta_{\ell'\ell} + e^{-S(\bar{E})/2} f_{\hat{O}}(\bar{E}, \omega) R_{\ell'\ell} \end{split}$$

• ferro-paramagnetic transition for for $1<\alpha\leq 2$ manifest in $P(m_{_{\!X}})$ or $\langle\hat{m}_{_{\!X}}^2\rangle$ with

$$\hat{m}_x = N^{-1} \sum_j \hat{\sigma}_j^x$$
 magnetization

23

Measuring Work Distribution in Quantum Thermodynamics

24

Work distribution function and quantum fluctuation relations (QFRs)

Verification of Jarzynski equality $\left\langle e^{-\beta W} \right\rangle = e^{-\beta \Delta F}$ with 5 spins

Quantum fluctuation relations: Foundations and applications, M Campisi, P Hänggi, and P Talkner, RMP 2011

first potential test of QFR in quantum many-body

Conclusions

QND gate — Applications

QND gate $\mathcal{U}_{\mathrm{QND}}$ is a building block of quantum algorithms like quantum phase estimation (QPE) which enables

- Measurement of many-body Hamiltonian \hat{H}_{spin} :

- Test of Eigenstate Thermalisation Hypothesis
- Work distribution function and Quantum Fluctuation Relations
- Study of energy level statistics of quantum many-body systems via Spectral Form Factor (SFF)
- Sampling many-body spectral functions

$$\hat{I}_{\text{spin}} = N$$

$$\mathcal{U}_{\text{QND}} = e^{-i\hat{H}_{\text{QND}}t}$$

$$\hat{H}_{\text{QND}} = \hat{H}_{\text{spin}} \otimes \hat{P}_{z}$$

D. Yang, et. al. *Nat. Commun.* **11**, 775 (2020)

$$\hat{H}_{\text{QND}} = \hat{H}_{\text{spin}} \otimes \hat{\sigma}_{z}$$

DV et.al. PRX Quantum 1, 020302 (2020)

D. Sels, E. Demler arXiv:1910.14213 [quant-ph]

uibk

Thank you